Facebook Pixel Code
We use cookies to create the best experience for you. Keep on browsing if you are OK with that, or find out how to manage cookies.

Quadaritic programming Essay Example

Show related essays

Quadaritic programming

This is a preview of the 8-page document
Read full text

In this specific example, we will consider a case when c will be equal to zero, c=0. This example dwells on the condition that all the optimization problems are viewed in two different ways, which are either the dual problem or the optimization problem, which is referred to as the duality principle.This theory is most applicable while being used as an interior point in quality programming. The lagrange multiplier is also very efficient in this optimization since it leads to identification of the local maxima and the local minima in any function but is subject to every equality constraint (Xia, 2011).A good example of this application on lagrangian is where we want to maximize a function, and subject is to. After graphically rep[resenting this information, we find that there is a feasible set which is the unit circle and consequently, the level set which is determined to be the diagonal lines w2hich are then calculated to have a slope of -1. After graphically representing this, we find that the minimum and maximum occurs at the pointsAp in this case is = 0. Substituting x = x∗ − p into the objective functional, we getf(x) = 12(x∗ − p)TB(x∗ − p) − (x∗ − p)Tb ==12pTBp − pTBx∗ + pTb+ f(x∗) .it also implies that Bx∗ =( b − ATλ∗). Observing Ap = 0, we havepTBx∗ = pT(b − ATλ∗) = pTb −(Ap)Tλ∗| {z }= 0,whence we find that f(x) = 12pTBp + f(x∗) .In view of p ∈ Ker A, we can write p = Zu , u ∈ lRn−m, and hence,f(x) = 12uTZTBZu + f(x∗) .Since ZTBZ is positive definitely, we usually deduce f(x) > f(x∗). Eventually, we realize that x∗ is always the quadratic programming unique global minimizer.In this situation, we assume that ˆx ∈ lRn satisfies the KKT conditions for the quadratic programming issues and problem in a way that the particular holds true assuming that in all cases the constraint gradients which include ci, 1 ≤ i ≤ m, ai, i ∈ Iac(ˆx) are all linearly independent. Additionally, we also assume that ci, 1 ≤ i ≤ m, ai, i ∈ Iac(ˆx) are the constant gradients and are also linearly independent in all cases. We now suppose that there are s j ∈ Iac(ˆx) such that ˆµj < 0 and then p should represent the quadratic programming sich that we minimize 1/2pTBp − ˆbTp over p ∈ lRn and then subject it to Cp = 0 aTip = 0 , i ∈ Iac(ˆx) \ {j} .; where b is = Bxˆ − b.we always find that p is a feasible direction of constaint j, such that atjp ≤ 0

This is a preview of the 8-page document
Open full text
Close ✕
Tracy Smith Editor&Proofreader
Expert in: Mathematics, Formal science & Physical science, Statistics
Hire an Editor
Matt Hamilton Writer
Expert in: Mathematics, Geography, Logic & Programming
Hire a Writer
preview essay on Quadaritic programming
WE CAN HELP TO FIND AN ESSAYDidn't find an essay?

Please type your essay title, choose your document type, enter your email and we send you essay samples

Contact Us